Localization of CNS Pathology Based on the Physical Exam

Andrew Asimos, MD

Director of Emergency Stroke Care
Carolina Medical Center
Charlotte, NC

Adjunct Associate Professor, Department of Emergency Medicine
University of North Carolina School of Medicine at Chapel Hill

FERNE Brain Illness and Injury Course

FERNE Foundation for Education and Research in Neurological Emergencies

Andrew Asimos, MD

Disclosures

• NovoNordisk, Boehringer Ingelheim Advisory Boards
• Research support from Boehringer Ingelheim

4th Mediterranean Emergency Medicine Congress
Sorrento, Italy
September 17, 2007

Session Objectives

• Emphasize the essential elements of the H&P for localizing CNS pathology
• Describe an algorithmic, systematic approach to localizing neurologic pathology
 • The patient presenting with weakness

Key Clinical Questions

• Is the clinical presentation consistent with neurological pathology
• Where does the pathology localize to?
• What diagnoses exist at that localization?
• What acute interventions exist for those diagnoses?
Key Learning Points

- Consider the neuroanatomy systematically
- Use key features of the history and neuro exam to narrow down the localization

An Algorithm for Diagnostic Localization

- Unilateral versus bilateral
- Start from the cortex and work your way down and out

Unilateral: Key Questions

- Cortical signs?
- Face involved?
- Dermatomal / Myotomal?
- Peripheral nerve specific?

Bilateral: Key Facts

- Mental status impaired?
- Which limbs?
- Sensory level or involvement?
- Bladder involvement?
- Proximal vs distal?
- Fluctuating or fatiguing pattern?
- Ocular or bulbar signs?

Weakness Cause of : Grouped by Anatomic Subunit

Diagnostic Algorithm for Acute Nontraumatic Unilateral Weakness

```
<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical signs (Associated visual field deficit, gaze preference, aphasia, neglect)?</td>
<td>Yes</td>
</tr>
<tr>
<td>Limbs and lower face on same side (UMN signs)?</td>
<td>Yes</td>
</tr>
<tr>
<td>Contralateral cerebral hemisphere process</td>
<td>Yes</td>
</tr>
<tr>
<td>Combination of: Right sided hemiparesis?</td>
<td>No</td>
</tr>
<tr>
<td>Right sided sensory deficit?</td>
<td>No</td>
</tr>
<tr>
<td>Right visual field deficit?</td>
<td>No</td>
</tr>
<tr>
<td>Left gaze preference?</td>
<td>No</td>
</tr>
<tr>
<td>Aphasia?</td>
<td>No</td>
</tr>
<tr>
<td>Lacunar syndrome?</td>
<td>No</td>
</tr>
<tr>
<td>Left (dominant) cerebral hemisphere process ?</td>
<td>No</td>
</tr>
<tr>
<td>Combination of: Left-sided hemiparesis?</td>
<td>No</td>
</tr>
<tr>
<td>Left-sided sensory loss?</td>
<td>No</td>
</tr>
<tr>
<td>Left visual field deficit?</td>
<td>No</td>
</tr>
<tr>
<td>Right gaze preference?</td>
<td>No</td>
</tr>
<tr>
<td>Left-sided neglect?</td>
<td>No</td>
</tr>
<tr>
<td>Right (non-dominant) cerebral hemisphere process</td>
<td>No</td>
</tr>
</tbody>
</table>
```
Motor Neuron Neuroanatomy

- UMN - Cortex to the lateral column of the spinal cord
- LMN - Anterior column to the motor end-plate

Upper vs Lower Motor Neuron Weakness

<table>
<thead>
<tr>
<th>Clinical</th>
<th>UMN</th>
<th>LMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Muscle tone

- ↑
- ↓

Fasciculation

- None
- Present

Atrophy

- None
- Severe

Babinski sign

- Present
- Absent

Somatotopic Organization in the Brain

Diagnostic Algorithm for Acute Nontraumatic Unilateral Weakness

<table>
<thead>
<tr>
<th>Cranial nerve signs?</th>
</tr>
</thead>
<tbody>
<tr>
<td>hemiparesis (ipsilateral face/contralateral body, UMN signs)?</td>
</tr>
</tbody>
</table>

Brainstem process

- Yes
- No

Notable Midbrain and Brainstem Syndromes Causing Unilateral Weakness

- Weber 3rd nerve palsy
 - Midbrain
 - Ipsilateral facial weakness
 - Contralateral hemiparesis

Pons Millard-Gubler
- Facial Palsy
- Hemiparesis

Pons Foville’s Facial Paresis, Abducens’ palsy
- Hemiparesis

Anatomy of the Midbrain at the Level of the Third Nerve
FERNE / MEMC IV Brain Illness and Injury Course:
Localization of CNS Pathology Based on the Physical Exam
Andrew Asimos, MD, FACEP

Diagnostic Algorithm for Acute Nontraumatic Unilateral Weakness

- Cranial nerve signs +/- hemiparesis (ipsilateral face/contralateral body, UMN signs)?
 - Yes: Brainstem process
 - No

- Hemiplegia or monoplegia, ipsilateral loss of vibration/proprioception, contralateral loss of pain and temperature?
 - Yes: Brown-Sequard syndrome
 - No

- Myotomal weakness (weakness associated with an isolated spinal nerve), dermatomal sensory involving (usually pain)?
 - Yes: Radiculopathy
 - No

Spinal Cord- 3 Basic Areas

- Posterior column (sensory - proprioception & vibration)
- Lateral Column
 - a. corticospinal (motor)
 - b. spinothalamic (sensory - pain & temperature)
- Anterior Column (motor)

Cervical Myotomes

- C4 Elbow flexors (biceps, brachialis, & brachioradialis)
- C5 Wrist extensors (extensor carpi radialis longus & brevis)
- C6 Elbow extensors (triceps)
- C7 Finger flexors (distal phalanx – flexor digitorum profundus)
- C8 Small finger abductor (abductor digiti minimi)
- T1 Small finger abductor (abductor digiti minimi)

Lumbosacral Myotomes

- L2 Hip flexors (iliopsoas)
- L3 Knee extensors (quadriceps)
- L4 Ankle dorsiflexors (tibialis anterior)
- L5 Long toe extensors (extensor hallucis longus)
- S1 Ankle plantar flexors (gastrocnemius, soleus)

Sensory Dermatomes

- C4 Top of ACJ
- C5 Lateral ACF
- C6 Thumb
- C7 Middle finger
- C8 Little Finger
- T1 Medial ACF
- T4 Nipple line
- T19 Umbilicus
- L4 Medial malleolus
- L5 Dorsal 2-3 MTP
- S1 Lateral heal
FERNE / MEMC IV Brain Illness and Injury Course:
Localization of CNS Pathology Based on the Physical Exam
Andrew Asimos, MD, FACEP

Diagnostic Algorithm for Acute Nontraumatic Unilateral Weakness

- Nerve plexus syndrome?
 - Yes
 - Brachial plexopathy
 - (Shoulder, back or arm pain, followed by weakness of the arm, shoulder girdle, diminish reflexes)
 - Lumbar plexopathy
 - (Lateral back pain, insidiously progressing leg weakness, sensory findings are absent, deep tendon reflexes may be diminished; bowel and bladder function are not affected)
 - No
 - No

- Peripheral nerve entrapment neuropathy syndrome?
 - Yes
 - Median nerve compression
 - (Carpal tunnel syndrome)
 - Weakness of abduction/opposition of the thumb; sensory findings in palmar and dorsal surfaces of thumb, index, and middle fingers
 - Ulnar nerve entrapment
 - (Weakness of small finger flexion, adduction/abduction of fingers; sensory findings in small & ring fingers)
 - Radial nerve palsy
 - (Saturday night palsy)
 - Wrist drop and weakness of finger and thumb extension; sensory findings usually minimal
 - Sciatic nerve compression
 - (Weakness of the anterior tibial and gastrocnemius muscles)
 - Entrapment of the common or deep peroneal nerve
 - (Footdrop; sensory findings in web space between great and second toes)
 - No
 - No

Lumbosacral Plexus

- More difficult to recognize and localize than lesions of the spinal roots or peripheral nerves
- Trauma, radiation or malignancies
- Best clue is a motor and sensory deficit involving more than one spinal or peripheral nerve
- LMN signs more prominent than the sensory changes

Plexopathies

Diagnostic Algorithm for Acute Nontraumatic Bilateral Weakness

- Lassitude associated with an acute illness?
 - Yes
 - Treat acute illness
 - No
 - Bilateral weakness and diminished mental status?
 - Yes
 - Massive cerebral process
 - No
 - Tetraparesis
 - (UMN signs) + CN signs?
 - Yes
 - Brainstem process
 - No

Brainstem Process

Consider infectious or Massromenial Disease
Locked-in Syndrome

- Quadriplegia, mutism, and preserved consciousness
- Pontine lesion paralyses
 - Horizontal eye movements
 - Jaw, face, bulbar muscles
- Can be misdiagnosed as coma

Diagnostic Algorithm for Acute Nontraumatic Bilateral Weakness

All 4 limbs (UMN signs), sensory level, bladder dysfunction?

Yes → Mid or upper cervical myelopathy

No → Legs and hands (UMN signs)?

Yes → Low cervical myelopathy

No → Legs, UMN signs?

Yes → Thoracic myelopathy (Also may be caused by a parasagittal lesion in the interhemispheric fissure)

No

Myelopathies

- Intact cranial nerves and speech
- UMN signs to some degree
 - Except in spinal shock
- Distinct level to sensory findings
- Bladder dysfunction

<table>
<thead>
<tr>
<th>LMN and Beyond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution</td>
</tr>
<tr>
<td>Distribution</td>
</tr>
<tr>
<td>Sensory</td>
</tr>
<tr>
<td>Fatigue</td>
</tr>
<tr>
<td>Serum CPK</td>
</tr>
</tbody>
</table>
Polyneuropathy

- Affect both motor and sensory symptoms
 - Unlike myopathies and NMJ disorders
- Often heralded by paresthesias
- Invariably, vibratory sense is lost distally
- Weakness due to the involvement of a large number of nerves
- Distal power reduced most dramatically
 - Longer nerves since most severely affected
- DTR's characteristically diminished

Myopathies

- Primary process in the myocyte
- Systemic disorder
 - Metabolic, inflammatory, drug related, etc.
- Reflexes maintained until weakness is severe
- Inflammatory myopathies "classically" involve proximal muscles

Conclusions

- Approach CNS Pathology Localization
 - Systematically
 - In the context of important distinguishing features
 - Based on the relevant neuroanatomy

Questions?

www.FERNE.org
aasimos@carolinas.org
704 355 4212